

Ministerie van Economische Zaken

Comparison on electrical characterization of SSL and uncertainty analysis

Dongsheng Zhao

14:30-15:00, 24 April, NPL, UK

The need for electrical measurement

12.XX W

Dutch Metrology Institute

VSL, The Art of Measurement 2 / 48

Significant discrepancy between results from different labs

Ρ

Vrms

Lab1

Less discrepancy

Dutch Metrology Institute

VSL, The Art of Measurement 3 / 48

Lab2 Lab3 Lab2 S (Apparent Power) Irms Significant discrepancy PF(Power Factor) Significant discrepancy

THD (Total Harmonic distortion)

Reactive power accurately measured? \rightarrow Power operator

Reactive power is also important for Power operator

VSL, The Art of Measurement 4 / 48

Intercomparison

Dutch Metrology Institute

VSL, The Art of Measurement 5 / 48

Lamps used in comparison

	Model
L1	Osram: PARATHOM PAR16 20
L2	Philips MASTER LED bulb MV
L3	Osram: Parathom A60
L4	Osram: Parathom A80
L5	Osram: Parathom A40FR

Rich current harmonics in SSL lamps

Measurement conditions

- More stringent than standard

- Ambinet condition: 23.0 \pm 0.5 $^{\rm O}{\rm C}$ (25.0 \pm 1.0 $^{\rm O}{\rm C}$ in standard)
- AC Power supply: THD<0.5% (3% in standard)
- Voltage regulated to within \pm 0.1% under load (\pm 0.2% in standard)
- Stabilization: burn 72 hours after purchasing (>1000 hours)
- at least 3 readings of the electrical power over a period of 30 min, taken 15 minutes apart, is less than 0.2% (0.5% in standard)
- Operating orientation with lamp upward
- The connection between the power supply, transducer and lamps must be kept as short as possible

 Visl. The Art of Measurement

 Visl. The Art of Measurement

 Visl. The Art of Measurement

Measurement setup in three labs

Dutch Metrology VSL, T Institute

VSL, The Art of Measurement 9 / 48

Vrms measured

Vrms measured

P measured

P measured

Irms measured

Irms measured

Institute

PF measured

PF measured

THD measured

THD measured

Ρ

Irms

Dutch Metrology Institute

VSL, The Art of Measurement 20 / 48

Generally, the uncertainty of power measurement can be within 0.6% for EUT (Equipment under test) like SSL lamps. For I_{rms} measurement, the uncertainties are high for some special lamps, as high as 3%.

Dutch Metrology Institute

VSL, The Art of Measurement 21 / 48

The comparisons are done with the same lamps circulated around laboratories. The difference of the power measured using different samples of the same model can be as high as 2%. The difference of the I_{rms} measured using different samples of the same model can be as high as 3%.

The large uncertainty of I_{rms} measurement has three reasons

The first reason is that the measurement has larger uncertainty in higher frequency range. That is due to the characteristic of the digitizer and the transducers. If the EUT has rich harmonics in high frequency range, the total uncertainty increases.

The second reason is that the EUT includes not only the lamps in high frequency. The cable, the power supply, the connections are also parts of EUT which are variant in different setups. For some special EUTs, resonance occurs which becomes predominant source of uncertainty.

The third reason is that the transducers (mainly the current shunt) can change the current waveform of the EUT. This is a significant uncertainty source for some lamps with large peaks in current waveform, for instance, L1 in this comparison.

Dutch Metrology Institute

VSL, The Art of Measurement 25 / 48

- Measurement capability of instruments
- Influence to the EUT
- The cable, the power supply, the connections are also parts of EUT in high frequency

Uncertainty Analysis

Dutch Metrology Institute

VSL, The Art of Measurement 27 / 48

Calibration data in fundamental frequency

Temperature inconsistence

http://paralela.org/freeware projects/bicycle headlight more on leds.html

The DC offset of the input channel should be checked. The DC offset of the current measurement circuit can be checked when the load is disconnected from the measurement setup.

Dutch Metrology Institute

VSL, The Art of Measurement 30 / 48

Dutch

Instability of the SSL product

VSL, The Art of Measurement Metrology 31/48 Institute

Influence of the distorted voltage signal of power supply

	L1	L2	L3	L4	L5
3.0%	5.77%	1.83%	0.61%	0.69%	0.81%
0.1%	0.18%	0.06%	0.02%	0.02%	0.03%

Bandwidth error

33 / 48

Ac frequency flatness error

K_Rdg	K_Rng	K_kHz	Error
0.0006	0.0003	0.0001	0.15%

Frequency	Accuracy ±(reading error + measurement range error)					
ricquency						
DC	±(0.2% of reading + 0.1% of range)					
0.1 Hz ≤ f < 10 Hz	±(0.2% of reading + 0.1% of range)					
10 Hz ≤ f < 45 Hz	±(0.2% of reading + 0.05% of range)					
45 Hz ≤ f ≤ 1 kHz	±(0.1% of reading + 0.05% of range)					
1 kHz < f ≤ 10 kHz	±(0.1% of reading + 0.05% of range)					
10 kHz < f ≤ 50 kHz	±(0.2% of reading + 0.1% of range)					
50 kHz < f ≤ 100 kHz	±(0.6% of reading + 0.2% of range)					
100 kHz < f ≤ 200 kHz	±(0.6% of reading + 0.2% of range)					
200 kHz < f ≤ 400 kHz	±(1% of reading + 0.2% of range)					
400 kHz < f ≤ 500 kHz	±((0.1 + 0.006 × f*)% of reading + 0.2% of range)					
500 kHz < f ≤ 1 MHz	$\pm((0.1 + 0.006 \times f^*))\%$ of reading + 2% of range)					
1 MHz < f ≤ 5 MHz	$\pm((0.1 + 0.006 \times f^*))\%$ of reading + 2% of range)					
	* The unit of f in the equation for the reading error is (kHz).					

Dutch Metrology Institute

VSL, The Art of Measurement 34 / 48

Influence of shunt resistor

Influence of shunt resistor

Model for low frequency harmonics

Dutch Metrology Institute

VSL, The Art of Measurement 37 / 48

Dutch

Institute

Influence of shunt resistor

Influence of shunt resistor

Influence of power supply impedance

VSL, The Art of Measurement Metrology 40 / 48 Institute

Dutch

Model for high frequency harmonics

The source impedance level suggested by IEC-725(1981), Table-1, appears to be 0.4+0.25j at 50 Hz.

Dutch Metrology Institute

VSL, The Art of Measurement 41 / 48

Influence of power supply impedance

Contour of the relative deviation (expressed as percentage) in RMS current value with variable source impedance

D. Zhao and G. Rietveld, "The Influence of Source Impedance in Electrical Characterization of Solid State Lighting Sources," Proceeding of 2012 Conference on Precision Electromagnetic Measurements, pp.300--301, Washington DC, US, 2012

Dutch Metrology Institute

VSL

VSL, The Art of Measurement 42 / 48

Proposed source impedance stabilization network

The RMS current deviation calculated becomes less than 0.02 %

Dutch Metrology Institute

VSL, The Art of Measurement 43 / 48

Proposed simplified source impedance stabilization network

VSL, The Art of Measurement 44 / 48

Example of uncertainty analysis

Uncertainty budget, Voltage	L1-x					
Source	Туре	Value $(\mu V/V)$	Distribution	k-factor	SenCoef.	Std. Unc. $(\mu V/V)$
Calibration voltage channel	В	435	Gaussian	1	1	434.8
Stability after varm-up	В	435	Uniform	1.732	1	251.0
Repeatability	A	210	Gaussian	1	1	210.0
				Combined uncertainty:		544

Uncertainty budget, Power	L1-x					
Source	Туре	Value (µW/VA)	Distribution	k-factor	SenCoef.	Std. Unc. $(\mu W/VA)$
Calibration current channel	В	100	normal	1	1	100.0
Calibration voltage channel	В	435	normal	1	1	434.8
Temperature dependence	В	800	Gaussian	1	1	800.0
Influence of power supply THD	В	1800	Uniform	1	1	1800.0
Wiring error	В	32	normal	1	1	32.0
Stablization of EUT	В	2000	normal	1	1	2000.0
Repeatability	A	100	normal	1	1	100.0
				Combined uncertainty:		2844

Example of uncertainty analysis

Uncertainty budget, Current	L1-x					
Source	Туре	Value (µA/A)	Distribution	k-factor	SenCoef.	Std. Unc. (µA/A)
Calibration current channel	В	100	normal	1	1	100.0
Bandwidth error	В	22	normal	1	1	22.0
Ac flatness of current channel	В	1500	normal	1	1	1500.0
Wiring error	В	32	normal	1	1	32.0
Influce of shunt resistor	В	8241	normal	1	1	8241.0
Stablization of EUT	В	2000	normal	1	1	2000.0
Repeatability	A	200	normal	1	1	200.0
				Combined	uncertainty:	8615

Summary

- For SSL products, with rich high frequency harmonics, the uncertainty calculations of electrical parameters need completely new approaches. Uncertainty sources are identified and written into guideline.
- The uncertainty analysis for SSL electrical measurement is the firstly done in literature based on the solid understanding of the uncertainty sources.

Acknowledge

Discussions with colleagues of METAS and Trescal