

Metrology for Solid State Lighting

Comparison of Efficacy Determination of SSL products

<u>Marijn van Veghel,</u> Edgar Vuelban, Jan Snoeij, Petri Kärhä

> Metrology for SSL Workshop Teddington 24-25 April 2013

Dutch Metrology Institute

- **Goal**: determination of the state-of-the-art of SSL characterization at NMIs through regular calibration services
- Primary set of parameters:
 - Total luminous flux
 - Electrical power
 - Luminous efficacy
- Secondary set of parameters:
 - Correlated Colour Temperature (CCT)
 - Chromaticity (x, y)

Artefacts

Identifier	Picture	Manufacturer	Model	Nominal CCT	Rated voltage or current	Rated power
1	V	Philips	Master LED bulb E27	2700 K	230 V AC	12 W
2		Osram	PAR16 20 CW 20°	5000 K	230 V AC	5 W
3	1	RetroFix	SMD Clear Tube 120 cm length 6000K 140°	6000 K	230 V AC	18 W
4		Osram	64476 BT Sil 100W E27	3000 K	230 V AC	100 W

Dutch Metrology Institute

Metrology for SSL Workshop 24-25 April 2013 - Comparison P 3

Participants

Laboratory	Instrument used for Iuminous flux	Instrument used for colorimetric quantities		
Aalto	Sphere photometer (1.65 m)	Sphere spectroradiometer		
CSIC	Sphere photometer (3 m)	Sphere spectroradiometer		
INRIM	Goniophotometer	Goniospectroradiometer (2.795 m)		
LNE	Sphere photometer (2 m)	Sphere spectroradiometer		
MKEH	Sphere photometer (1.5 m)	Sphere spectroradiometer		
NPL	Goniophotometer	Goniospectroradiometer (1.677 m)		
РТВ	Goniophotometer	Goniospectroradiometer (2. 5 m)		
SMU	Sphere photometer (1m)	Sphere spectroradiometer		
SP	Sphere photometer (1.5 and 3 m)	Sphere spectroradiometer		
VSL (pilot)	Sphere photometer (3 m)	Sphere spectroradiometer		

Dutch Metrology Institute

Ρ4

Instruments

Dutch Metrology Institute

P 5

Metrology for SSL Workshop 24-25 April 2013 - Comparison

Comparison scheme

- 9 sets of artefacts
 - 1. Measured by pilot
 - 2. Measured by one participant lab
 - 3. Remeasured by pilot
 - Motivation:
 - Comparison duration
 - Stability of artefacts

Dutch Metrology Institute

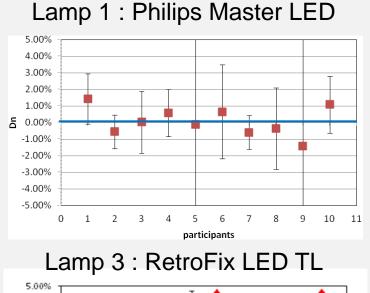
P 6

Metrology for SSL Workshop 24-25 April 2013 - Comparison

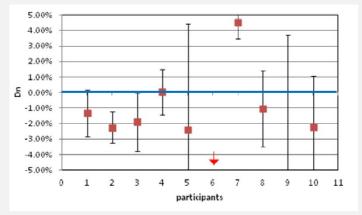
Measurement procedure

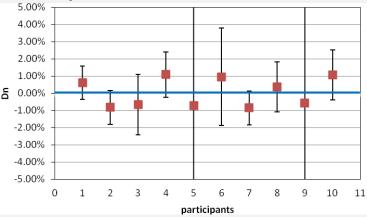
- 230 V 50 Hz power supply
 - Measurement of RMS current and RMS power during photometric measurement
- Ambient temperature (25 ± 1) °C
 - Measured at same height and within 1 m of lamp
 - Correction if measured at different temperature
- All lamps mounted base-up
 - Except TL
- Artefacts seasond by pilot for 100 h
- Stabilization to within 0.5% over 30 min window by participants
 - Light output and electrical power
- Measurement according to normal calibration procedure

Ρ7


Data analysis

- To compare results there should be a single reference value
- But different artefacts used
- Solution scale back to "virtual" artefact based on pilot lamp data
- Unilateral degree-of-equivalence Dn : relative difference of participant result to reference vale
- Uncertainty includes both uncertainty of participant and reference


Results: luminous flux

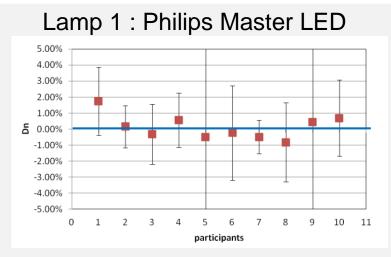


4.00% 3.00% 2.00% 1.00% 5 0.00% -1.00% ·2.00% -3.00% -4.00% -5.00% 0 2 3 9 10 11 1 4 5 participants

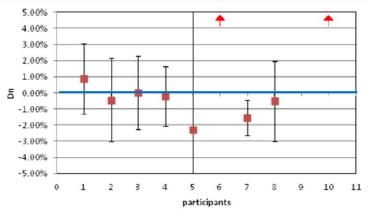
Lamp 2 : Osram LED spot

Lamp 4 : Osram incandescent

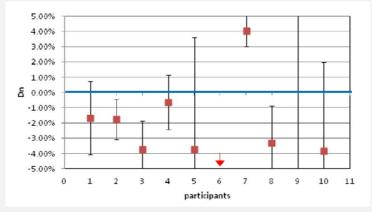
Dutch Metrology Institute


P 9

Metrology for SSL Workshop 24-25 April 2013 - Comparison



Results: luminous efficacy



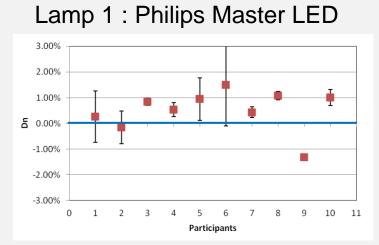
Lamp 3 : RetroFix LED TL



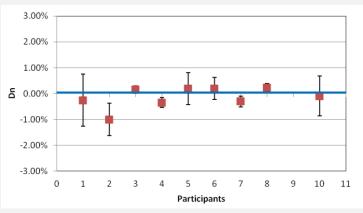
Metrology for SSL Workshop 24-25 April 2013 - Comparison

Lamp 2 : Osram LED spot

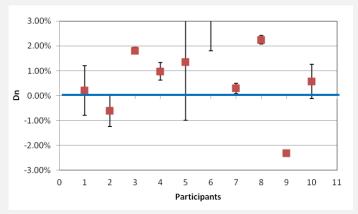
Lamp 4 : Osram incandescent



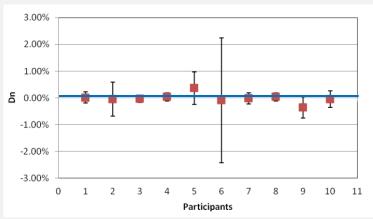
Dutch Metrology Institute



Results: electrical power



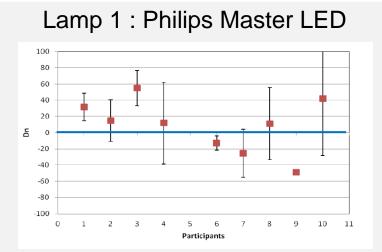
Lamp 3 : RetroFix LED TL



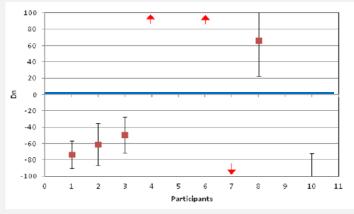
Metrology for SSL Workshop 24-25 April 2013 - Comparison

Lamp 2 : Osram LED spot

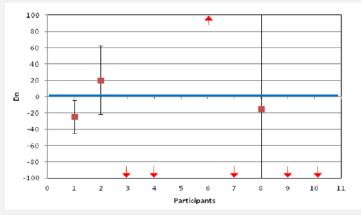
Lamp 4 : Osram incandescent

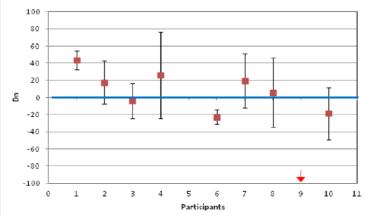


Dutch Metrology Institute



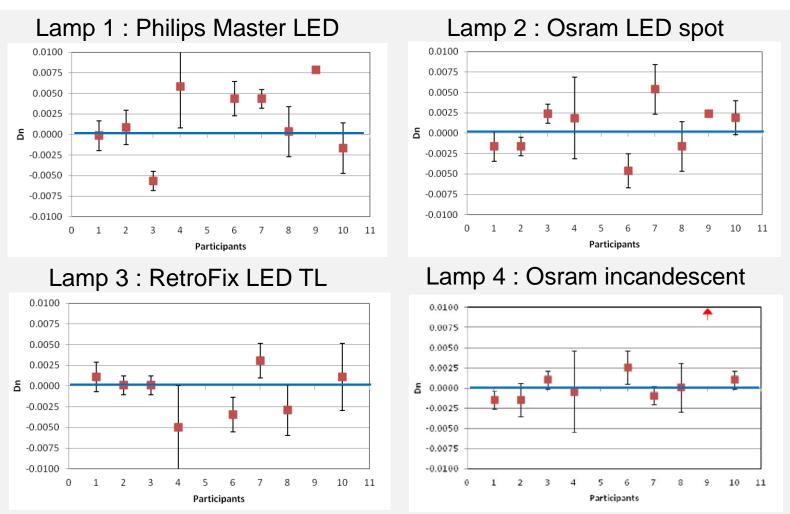
Results: CCT




Lamp 3 : RetroFix LED TL

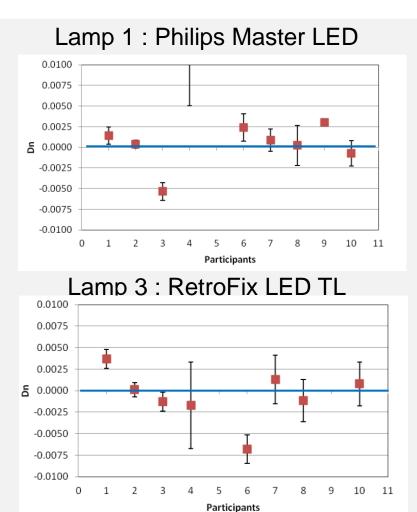
Lamp 2 : Osram LED spot

Lamp 4 : Osram incandescent

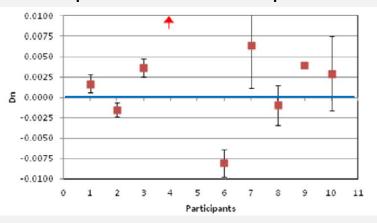

Metrology for SSL Workshop 24-25 April 2013 - Comparison

Dutch Metrology Institute

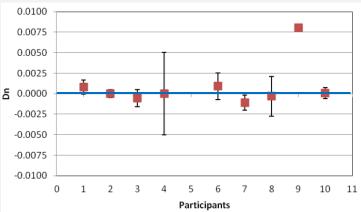
Results: chromaticity x


Metrology for SSL Workshop 24-25 April 2013 - Comparison

Dutch Metrology Institute



Results: chromaticity y



Lamp 2 : Osram LED spot

Lamp 4 : Osram incandescent

Metrology for SSL Workshop 24-25 April 2013 - Comparison

Dutch

Metroloav

P 15

Conclusions

- Luminous flux and efficacy:
 - Good agreement for for Philips Master LED
 - Large deviations for LED spot
 - Two extreme outliers; otherwise good agreement for LED TL
- Electrical power: underestimated uncertainties for all three LED lamps
- Colorimetric measurements: large deviations
 - In particular for CCT
 - LED spot and LED TL most difficult
 - No general agreement for incandescent, but better than for LED lamps

Recommendations

- Measurement procedures should be specified in more detail in order to obtain comparable results
- Alternatively, anything left open in the specification should be included in the uncertainty
- Extra effort should be put into quantifying the uncertainties for colorimetric parameters

VSL PO Box 654 2600 AR Delft The Netherlands

T +31 15 269 15 00 F +31 15 261 29 71 E info@vsl.nl I www.vsl.nl

The research leading to these results has received funding from the European Union on the basis of Decision No 912/2009/EC.

Dutch Metrology Institute

Data scaling

- Participant *n* measures for their artefact of type *m*:
- Pilot measures for same artefact:
- Pilot overall value for artefact type *m*:

- Large difference between individual artefacts; factor:
- "Virtual" data for participant *n*:

$$X_{n,m}$$
 $n = 2, ..., 10; m = 1, ..., 4$

$$X_{n,m}^{P} = \frac{1}{2} \left(X_{n,m}^{P,\text{before}} + X_{n,m}^{P,\text{after}} \right)$$

$$X_{1,m} = \frac{1}{9} \sum_{n=2}^{10} X_{n,m}^{P}$$

$$f_{n,m} = \frac{X_{n,m}^{P}}{X_{1,m}}$$

$$\widetilde{X}_{n,m} = \frac{X_{n,m}}{f_{n,m}}; \quad \widetilde{X}_{1,m} = X_{1,m}$$

Dutch Metrology Institute Metrology for SSL Workshop 24-25 April 2013 - Comparison P 18

Reference value

-2 (**x**z

- Based on weighted-mean with cut-off, following CCPR guideline:

$$\begin{split} \widetilde{X}_{m}^{\text{RV}} &= \sum_{n=1}^{10} w_{n,m} \widetilde{X}_{n,m} \qquad w_{n,m} = \frac{u_{\text{adj}}(X_{n,m})}{\sum_{n=1}^{10} u_{\text{adj}}^{-2}(X_{n,m})} \\ u_{\text{adj}}(X_{n,m}) &= \begin{cases} u_{\text{rel}}(X_{n,m}) & \text{if } u_{\text{rel}}(X_{n,m}) \ge u_{\text{cut-off}} \\ u_{\text{cut-off}} & \text{if } u_{\text{rel}}(X_{n,m}) < u_{\text{cut-off}} \end{cases} \\ u_{\text{cut-off}} & \text{if } u_{\text{rel}}(X_{n,m}) < u_{\text{cut-off}} \end{cases} \end{split}$$

Metrology for SSL Workshop 24-25 April 2013 - Comparison

P 19

Dutch

Metrology

Institute

- Participant results are evaluated using the unilateral degree-of-equivalence:

$$D_{n,m} = \frac{\widetilde{X}_{n,m}}{\widetilde{X}_{m}^{\text{RV}}} - 1$$
$$u_{\text{rel}}(D_{n,m}) = \sqrt{u_{\text{rel}}^{2}(\widetilde{X}_{m}^{\text{RV}}) + u_{\text{rel}}^{2}(\widetilde{X}_{n,m})}$$

$$u_{\rm rel}(\tilde{X}_m^{\rm RV}) = \sqrt{\frac{1}{\sum_{n=1}^{10} u_{\rm adj}^{-2}(X_{n,m})}}$$

Metrology for SSL Workshop 24-25 April 2013 - Comparison

Dutch Metrology Institute

Outlier summary

	Lamp 1: Philips Master LED	Lamp 2: Osram LED spot	Lamp 3: RetroFix LED TL	Lamp 4: Osram incandescent
Luminous flux	-	4	3	-
Luminous efficacy	-	5	3	-
Electrical power	7	6	5	-
ССТ	4	7	8	3
Chromaticity x	5	5	3	3
Chromaticity y	5	7	3	2

Dutch Metrology Institute

Metrology for SSL Workshop 24-25 April 2013 - Comparison P 21