

The Issues of Measurement of Optical Hazard Using Photometers EMRP JRP ENG05 Metrology for Solid State Lighting Simon Hall ,Paul Miller, Neil Haigh, Ben Thornton, Neil Haigh (Lux TSI)

25th April 2013

Background

Increasing demand for optical radiation safety related testing

Lamps (UV), LEDs (UV,VIS,NIR)

Increasing concern with light safety
 European Union 'AORD' safety requirement
 LED product safety
 e.g. LED signalling
 Safety of LED lighting (Blue Light Hazard);
 Photobiological 'manipulation' using light

safety studies

- ANSES France 25/10/201
 LED Lighting health issues
- SCENIHR EU 19/3/2012
 - EU Scientific Committee on Emerging and Newly Identified Health Risks
- CELMA EU 09/2011
 - European Lamp Companies Federation 'Biological Efficient Illumination'

Adverse and beneficial impact of LED lighting is an important and newly emerging field

Underpinning Issues

Two 'core' measurement parameters
 Spectral irradiance
 Spectral radiance
 ...spectral irradiance using a defined 'Field of View'

Note: 'field of view' *≥* 'acceptance angle'

Exposure Hazard Value (EHV)

Need to compare the exposure to the beam against defined permissible limits i.e. Quantify the Exposure Hazard Value (EHV)

Keynote Concern: EHV ± U?NPL

HV'

 Optical safety testing requires: Effective EHV < 1.0 where:

Effective EHV = EHV(meas) – EHV(Uncertainty)

- What is the uncertainty in the reported EHV?
- How does EHV uncertainty depend on test parameters?
- How much conservatism should be adopted?

{Note: This paper does not include systematic reproducibility of testing setup.}

Optical Safety Hazard bands NPL

Cool White LED spectrum

Spectral Band & Measurement Type

IEC 62471 Hazard Band	Wavelength Range (nm)	Measurement Type
Actinic UV Skin & Eye	200 to 400	Irradiance
Eye UV-A	315 to 400	Irradiance
Blue Light 'small' source	300 to 700	Irradiance
Blue Light 'extended' source	300 to 700	Radiance
Retinal Thermal	380 to 1400	Radiance
Retinal thermal (weak stimulus)	780 to 1400	Radiance
Infrared hazard to eye	780 to 3000	Irradiance
Skin thermal hazard	380 to 3000	Irradiance

Retinal hazards based on a radiance assessment

Spectral Radiometry

Double monochromator method

Test methodologies

Metrology

for Solid State Lighting

Radiance & Irradiance testing regimes

EyeLIGHT Software Platform

LED lamps and luminaires

Practical LED Safety Testing

Radiance Problem (LED Array Sources)

- Select representative source spectrum eg 440 nm indigo blue LED, High brightness cool white LED, Ultraviolet LED
- Adjust the source metrics to yield EHV = 1.0 (see next page)
- Vary the source metrics
- Explore influence upon EHV Value
- Relate to uncertainty level

Metrology

for Solid State Liahtina

Error

Influence of Spectral Properties

Netrology

for Solid State Lighting

• Plot EHV

Dynamic EHV Tracking

EHV Test

EHV Tracker

EHV & Spectral Analysis - Outcome

 Wavelength offset modifies EHV value
 1% for every 10 nm shift

Surprisingly low effect

Spectral linewidth

Increasing FWHM reduces EHV 'finesse' 2% EHV reduction per 5 nm

broadening

Spectral Irradiance Measurement

Irradiance = Power per unit detector area

Irradiance Coupling

- Uniform Irradiance at Aperture Stop
 - Coupled power increases quadratically with stop diameter

Calculated Irradiance is constant with stop size

Gaussian Profile Irradiance at Aperture Stop
 Coupled power decreases exponentially with

increasing stop diameter

Irradiance falls with increasing stop size

IEC 62471-1 Recommendation

Use 7 mm diameter unless irradiance at detector has good uniformity profile

EHV versus Detector Aperture Stop

Beam Diverger	nce	d ₆₃ at 200 mm	Practical Stop Diameter	Gaussian Coupling Efficiency	Accessible Emission	EHV	Aperture Stop Irradiance
mrad	deg	mm	mm	%	uW		W.m⁻²
100	6	20 20 20	6.9 7 7.1	11.2 11.5 11.8	30.8 31.7 32.5	0.97 1.00 1.02	0.80 0.82 0.84
500	29	102 102	6.9 7	0.457 0.470	30.8 31.7	0.97 1.00	0.80
		102	/.1	0.483	32.6	1.03	0.84

Typically 2-3% EHV change per 100 micron diameter uncertainty

EHV versus Aperture Stop

- As aperture stop is increased
 Detected radiant power should increase
- EHV assessment calculation

Assumes defined stop diameter

e.g. 7.0 mm aperture stop at 200 mm distance

 Use of slightly large aperture stop setting Will overestimate EHV result

Typically 2-3 % EHV increase for gaussian profile beam at stop set incorrectly by + 100 μ m

Yields a conservative EHV outcome

Radiance = Detected Irradiance per unit source solid angle

Version 1 : 18-05-2012 Slide 25

Exempt & Low Risk BLH

- Blue Light Hazard Testing Exempt Condition
 Exposure Time = 10000 s
 Acceptance Angle γ = 100 mrad ('field of view')
 Implies a 20 mm diameter field stop located over the source
- Blue Light Hazard Testing Low Risk Condition

Exposure Time = 100 s Acceptance Angle γ = 11mrad Implies a 2.2 mm diameter field stop located over the source

Field stop setting precision will influence radiance result Reference Test Method recommends 'imaging' setup

Low Risk BLH Imaging Method

Source

1:1 imaging lens

Field of View

Version 1 : 18-05-2012 Slide 27

Low Risk BLH Imaging Method

1:1 images of HB-LED sources

Field stop and LED chip size are both of the order of 2 mm for Low Risk Testing at 11 mrad

Low Risk BLH LED EHV Analysis

- Assume for LED chip evaluated at 200 mm:
 - LED Chip diameter ≈ 2.0 mm Assume gaussian 'exitance' profile Field Stop at 200 mm ≈ 2.2 mm
- Assess EHV due to power coupled through the field stop
 - 11 mrad field stop can substantially vignette certain source types

Field stop may 'vignette' source emission

11 mrad FOV - Gaussian Coupling Simulation of Gaussian Profile Stop Coupling

Required		Assumed	Nominal	Gaussian	Gaussian	
Field of	Test	Field Stop	LED Chip	Coupling	Coupled	
View	Distance	Diameter	Diameter	Efficiency	Power	ΈΠΙΥ
(mrad)	(mm)	(mm)	(mm)	(%)	(uW)	СПУ
11	200	2.1	2	70.18	36.5	0.95
11	200	2.2	2	66.8	38.4	1.00
11	200	2.3	2	73.33	40.1	1.04
						$\langle \rangle$

Assuming gaussian source exitance profile on field stop...

State Liahtina

....Typically 5% EHV change per 100 μ m field stop uncertainty

11 mrad FOV – Uniform Coupling

Simulation of Uniform Exitance Profile Field Stop Coupling

Required Field of View (mrad)	Test Distance (mm)	Assumed Field Stop Diameter (mm)	Nominal LED Chip Diameter (mm)	Uniform Irradiance Coupled Power (uW)	Relative EHV
11	200	2.1	2	35	0.91
11	200	2.2	2	38.4	1.00
11	200	2.3	2	42	1.09

Assuming uniform exitance profile on field stop...

....Typically 10% EHV change per 100 μ m field stop uncertainty

Practical Data (FOV = 11 mrad)

Typically 5% EHV change per 100 μ m field stop diameter increment

Metroloav

EHV variation for HB-LED Wavelength Offset

Spectral

NP

E

EHV & Field Stop Coupling

• The smaller the required acceptance angle γ

The more stringent the precision on the field stop diameter setting (and location within field of view)

 Stop uncertainty implies uncertainty of power coupled through field stop

Implies increased uncertainty in radiance and EHV value

- 5% to 10% EHV uncertainty at γ = 11 mrad
 For 100 μm change in field stop diameter
- Conservative approach

Use slightly larger field stop setting than specified

Summary of 62471 Uncertainties

- Optical radiation safety 'EHV' value
 Requires uncertainty value to be reported
 Adoption of conservative approach recommended
 i.e. ensure collection of (slightly) more radiant power
- Advance software simulation process
 Spectral 'sliding' & Stop size 'dithering'
 Uncertainty of influencing parameters can be gauged and analyzed dynamically

Typical 62471 EHV Uncertainties

Parameter	Influence on Blue Light Hazard Exposure Hazard Value
Centre wavelength	\approx 1% per every 10 nm offset
Spectral Linewidth	$\approx 2\%$ per every 5 nm FWHM spread
Spectral radiant power	\approx 2 to 5% depending on detector type
Irradiance (Area of detector)	≈ 2 to 3% per 100 μm @ 7 mm detector diameter
Radiance (area of field stop)	≈ 5 to 10% per 100 μm @ 2.2 mm diameter (Low Risk Testing at 11 mrad FOV)

Thank you for your attention

With acknowledgement to EMRP And thanks to LUX-TSI Ltd

