

EMRP-ENG05 Stakeholder Meeting

Characterised Mesopic Photometer

Michaela Schuster, Armin Sperling

EMRP-ENG05 Stakeholder Meeting

Characterised Mesopic Photometer

contributing partners

Outline

- Goals of the Task
- Background
- Traceability chain for mesopic measurements
- Characterisation of detectors
- Mesopic luminance meter
- Spectral mesopic values
- Conclusion

Goals

- The aim of this task was to develop reference photometers for traceable optical measurement on SSL sources at low and very low light levels:
 - Development and building a true mesopic luminance meter including the electronics based on a photopic and a mesopic filter radiometers with an target uncertainty of 2 %
 - Mesopic luminance and illuminance measurement using spectroradiometers
 - Traceablility chain for mesopic instruments using characterised photopic and scotopic luminance and illuminance meters

Background

• Photopic an scotopic luminous efficacy functions as defined by CIE in 1979

Background

- EURA MET European Association of National Metrology Institutes
- Mesopic range defined by CIE in 2010 (CIE 191:2010) as a linear combination of the photopic and scotopic luminous efficiency functions
 - dependent on an adaptation level in the range of $(0 \le m \le 1)$

Background

$$V_{\rm mes}(\lambda) = \frac{1}{M(m)} \left[mV(\lambda) + (1-m)V'(\lambda) \right]$$

• What does "adaptation level" mean

The adaptation level depend on the scenery

- currently investigated by CIE JTC1
- no solution available at the moment

P30SCT Scotopic illuminance meter

- $V(\lambda)$ and $V'(\lambda)$
- Mosaic filters
- Cosine corrected
- Temperature stabilized at

approx. 35 °C

Physikalisch-Technische Bundesanstalt

P30SCT Photopic illuminance meter

Linearity and temperature dependence of photometer heads:

Linearity

Temperature dependence

Photopic meter: $\alpha_0 = -0,1 \%/K$ Scotopic meter: $\alpha_0 = -0,08 \%/K$

- Lamp holder that allows independent alignment of 6 degrees of freedom on cross bench
- maximum distance to source >40m
- Measurement carriage with 6 places for measurement devices on rail system
- Detectors inside mounted on carousel
- Different lamps like luminous intensity standard Wi41/G and high power lamps for linearity measurements

• Photopic detector

Scotopic detector

- Treatment of speckle, polarisation and interferences
- Determination of uniform radiation field through integrating sphere or holographic diffusers
- Uniformity in measurement plane better than 0,1 %
- Mounting of the detectors on 3-axis translation stage with positioning better than 0,1 mm

- Wavelength range 230 nm to 1600 nm
- Output power up to 100 mW/nm
- Power stabilisation better than 0,1 %
- Bandpass limitation down to 0,1 nm

- Measurement against reference trap detector in substitution
- trap calibrated against cryogenic radiometer

P30SCT Scotopic illuminance meter

- $V(\lambda)$ and $V'(\lambda)$
- Mosaic filters
- Cosine corrected
- Temperature stabilized at

approx. 35 °C

P30SCT Photopic illuminance meter

On customer request, these detectors are now also implemented in goniophotometer systems from LMT suitable for the determination of the S/P ratio of lamps and luminaires.

L1009 Photopic luminance meters

L1009 Scotopic luminance meters

- Field of view: 3°, 1°, 20', 6'
- $V(\lambda)$ and $V'(\lambda)$
- full filters
- no temperature stabilisation

Responsivity of luminance meters:

• Photopic detector

• Scotopic detector

Linearity and calibration factor of luminance meter:

Mesopic luminance meter

- Off-the-shelf optical components
- 2 detection channels, weighted by $V(\lambda)$ and $V'(\lambda)$ respectively
- Lowest measured luminance level: 0,005 cd/m²

- Standard deviation of the mean: 1 % with
 <2 s of integration
- Estimated f[']₁ for photopic: 3,6 %; scotopic:
 6 %

Mesopic luminance meter

- 2-channel switched integrator amplifier with 20 bit ADC
- Amplifier is based on a Burr-Brown ACF2101 integrated circuit
- Controlled by LabVIEW via USB
- 5 decades dynamic range

PB

Mesopic luminance meter

- Spectral sensitivity
- Linearity
- Effects of out-of-field sources
- Environment effects (temperature, humidity)
- Response to modulated luminance
- Polarization

- ...

PB

Spectral mesopic value

- Characterisation of luminaires
- Measurements of luminous flux, luminous intensity distribution and luminous efficacy necessary to characterise luminaires according to existing standards.
- With LED used in street lighting additional measurements needed regarding spectral intensity distribution

Relative spectral distribution at the given directions of emission

Spectral mesopic value

 Photopic characterisation of luminaires in goniophotometers and for applications where spectral mesopic luminance values are determined using the spectral reflection coefficient of surfaces.

$$L = \frac{\rho}{\pi} \cdot E \quad \Longrightarrow \quad L(\lambda) = \frac{\rho(\lambda)}{\pi} \cdot E(\lambda)$$

Conclusion

- Development of a photopic and a scotopic traceability chain to allow calibrations in the mesopic range according to CIE191:2010
- Development of a mesopic luminance meter with appropriate low noise electronics
- Development of a detector system for the spectral characterisation of lamps and luminaires to determine mesopic luminance values in road lighting
- Comprehensive characterisation of selected detectors and measurement systems for suitability and uncertainty analysis

Determination of adaptation level up to now not implemente

Characterisation of detectors TULIP setup at PTB

V. E. Anderson et al, Applied Optics, Vol. 31, No. 4, 1992 S. Brown et al; Applied Optics, Vol. 45, No32, 2006 Physikalisch-Technische Bundesanstalt

Uniformity of the irradiation field in a distance of 70 cm from the sphere source

