

Mitigating the "Green droop" effect of Nitride LEDs EMRP JRP ENG05 Metrology for Solid State Lighting Simon Hall , Daren Lock, Andrew Prins, Ben Crutchley

and Stephen Sweeney

Solid State Lighting Requirements

Societal Need:

- Energy savings Traceable metrology
- Reduced carbon footprint
 - Longevity
 - Lower maintenance costs
- Energy efficient lighting for domestic, industrial and public spaces
 - **Colour differentiation**
 - Human factors
- Address fragmented EU metrology

"Green Droop" effect for Nitride LEDs

Current (mA)

Photon absorption in a p-n homojunction

Existing methods

Centre for Carbon NPLO Natio 456 WAvelength (nm) 455 454 453 Ó 10 CW Current (mA) 16000 14000 12000 10000 emision i(a.u) 8000 -6000 4000 2000 420 460 520 540 380 400 440 480 500 Mauralanath (and 100 90 Forward voltage method 80 70 60 · ΔT (°C) 50 40 30 20 10

20

70 80 90

Current (mA)

Wavelength shift

J. Senawiratne, A. Chatterjee, T. Detchprohm, W. Zhao, Y. Li, M. Zhu, Y. Xia, X. Li, J. Plawsky, C. Wetzel, "Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes", Thin Solid Films 518, 1732 (2010).

Spectral analysis

Z. Vaitonis, P. Vitta, and A. Žukauskas, "Measurement of the junction temperature in high-power light-emitting diodes from the high-energy wing of the electroluminescence band", J. Appl. Phys. 103, 093110 (2008)

Forward voltage technique

Xi and E. F. Schubert, "Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method", Appl. Phys. Lett. 85, 2163 (2004).

Theory of measurement

Metroloav

Solid State Liahtina

- Blue emitting devices have the ability to generate photocurrent in another blue device due to overlapping emission and absorption edges
- The large Stoke's shift of the green devices, show that a blue device should also be able to generate a photocurrent in a green device
- The emission of the Blue LED sits on the Urbach tail of both Green and Blue
- Urbach tail is ∞ T and is a material property

Forward voltage measurement

State Liahtina

 $F_v = 87 \ ^0C \ (\Delta T \ is \ 67 \ ^0C + 20^0C \ bulk)$ at $80mA_{EURA}$

Experimental set-up

Two pulse generators with a linked trigger

Voltage measurement is across a 47Ω resistor

Pump fixed at 100 mA

Devices drilled to accept POF then polished

Nichia blue (NSPB510s) Nichia green (NSPG510S)

Pulse Regimes

Thermal Co-efficients

$$T(t) = T_0 + \Delta T_0 e^{-t/\tau}$$

where T(t) is the time (t) dependence of the absolute device temperature, T_0 is the ambient temperature and ΔT_0 is the initial temperature above ambient. References indicate our LED type will have a 1-2 ms time co-efficient

A measurement within 1 ms of the device switching off will be between ~ 30% and 60% of the device temperature at switch off

IrologyQ. Shan, Q. Dai, S. Chhajed, J. Cho, and E. F. Schubert "Analysis of thermal properties of GaInN light-emitting
diodes and laser diodes", J. Appl. Phys. 108, 084504, 2010.

P. Vitta and A. Žukauskas "Thermal characterization of light-emitting diodes in the frequency domain" Phys. Status Solidi C 6, S877 (2009).

Calibration

Junction Temperature

Bulk Temperature $\alpha = V_1 - V_0$

Where V_1 is the measured voltage under zero device drive current And V_0 the voltage at 0 ^{0}C

Voltage rise due to extra heating $(V_2 - \alpha) \gamma$

Where V_2 is the measured voltage under operation And γ is the adjustment for temperature decrease

Junction Temperature, $T_{j=}(V_2 - \alpha) \gamma \frac{dT}{dV}$

Where $\frac{dT}{dV}$ is the gradient from the calibration graph

Initial measurements

Measurements of the Blue pump pulse height with increasing Green device drive current

Blue pump pulse height

Temperature co-efficient

With a 1 ms Blue pulse delay, the temperature co-efficient (γ) is between 30 to 90 % of the device temperature

We can plot 30%,60% and 90% values of γ .

From references we expect these devices to have ~ 60 % due to their construction and packaging style

Comparison with Forward voltage techniques is consistent with 60%

ΔT is the measured $J_t-Bulk~T$

Metrology for Solid State Lighting

Q. Shan, Q. Dai, S. Chhajed, J. Cho, and E. F. Schubert "Analysis of thermal properties of GaInN light-emitting diodes and laser diodes", J. Appl. Phys. 108, 084504, 2010.

P. Vitta and A. Žukauskas "Thermal characterization of light-emitting diodes in the frequency domain" Phys. Status Solidi C 6, S877 (2009).

Results

Solid State Lighting

Utilising a temperature coefficient of 60% we can see that there is good agreement with our measured forward voltage technique

 $J_T = 86 \ ^0C$ (ΔT is 66 $^0C + 20^0C$ bulk) at 80mA

 $F_v = 87 \ ^0C (\Delta T \text{ is } 67 \ ^0C + 20^0C \text{ bulk}) \text{ at } 80\text{mA}$

- Measurements of Urbach tail shift with temperature
- Application of this technique to blue devices
- Investigate the technique with the two devices close coupled
- Investigate the technique at raised temperatures
- Increase the Technology Readiness Level of the technique so that it can be exploited commercially

Conclusions

- We have demonstrated a novel technique for measuring junction temperature.
- Measurements of the junction temperature of a Green LED device has been shown. The technique should also work for Blue emitting devices.
- Comparison with the forward voltage technique shows good agreement.
- Technique is dependent upon Urbach tail and is therefore a material property.

GB Patent Application No. 1207503.2 – Apparatus and method for monitoring LED efficiency GB Patent Application No.1207505.7 – Apparatus and method for monitoring LED colour mix

Conclusions (2)

- Development of a measurement of junction temperature, independent of electrical behaviour
- Ability to measure in-situ within a luminaire without additional architecture
- Ability to measure both blue and green devices in RGB system to provide stability control for colour rendition

Thank you for your attention

With acknowledgement to EMRP

