EMRP ENG05: Stakeholder Meeting

Guidelines on Application of SSL in State of the Art Lighting Applications

Dušan Sabol

25th April 2013

NPL, United Kingdom

Overview for: State of the art lighting application of SSL

- Lighting (including SSL) of public interior space have to fulfil requirements defined in EN 12464 and the relevant national and professional standards for the application, e.g. Museum lighting
- Interior applications: office, corridor, industrial, hospital, dentist, laboratory, spot, ambient, museum/gallery
- Criteria for lighting installations defined in EN 12464:

	Mainteined Illuminance \overline{E}_m [lx]				Uniformity $U_0 = \frac{E_{\min}}{\overline{E}_m}$ [-]			CRI <i>R_a</i> [-]	UGR [-]
	Task area	Immediate surrounding	Ceiling	Walls	Task area	Immediate surrounding	-		
Min Required									
Value	20 - 5000	20 - 500	> 30	> 50	≥ 0.7	≥ 0.4	≥ 0.1	20-90	16 - 28

Metrology

Aspects contributing to high visual comfort and pleasantness (1)

- To provide a smooth illumination of the environment, i.e. mitigate shadows (high uniformity U_0), minimize spatial chromaticity variations.
- First avoid a direct view of bare LEDs!
- Use of optical components (sheet or foil) diffuser/microprism/Fresnel or combination.
 UGHT
 UGHT</li
- Smaller spacing between LED chips leads to higher number of LED chips used but increases efficacy and uniformity.
- Longer distance between LED module & diffuser improves uniformity.

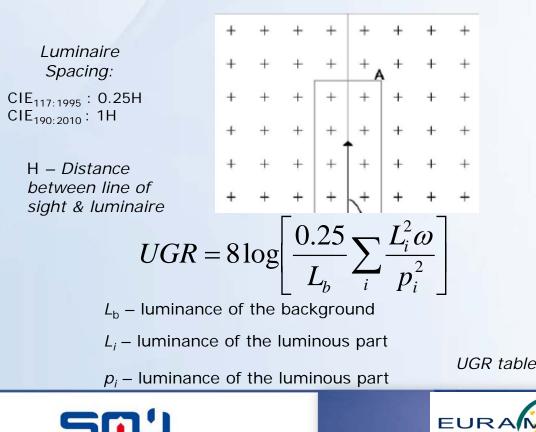
Metrology

Aspects contributing to high visual comfort and pleasantness (2)

- For reflectors, indirect optical designs for luminaires can produce better performance.
- High reflecting surfaces are preferable,
- In many applications with partial diffusivity or faceted reflector

Specular reflection

Partial diffusivity



Glare and glare estimation

- UGR estimates glare of a lighting system illuminating a room in the given
 luminaire spacing of one luminaire
- Described in CIE 117:1995 & CIE 190:2010

p-celling		70	70	50	50	- 30	70	70	50	50	3
p-walls		50	30	50	- 30	30	50	30	50	- 30	3
p-100r		20	20	20	20	20	20	20	20	20	2
room : X	crosswise to lamp axis				parallel to lamp axis						
2H	2H	18.5	19.3	18.8	19.5	19.7	18.5	19.3	18.8	19.5	19.
	3H	18.4	19.2	18.7	19.4	19.6	18.4	19.2	18.7	19.4	19.
	4H	18.4	19.1	18.7	19.3	19.6	18.4	19.1	18.7	19.3	19.
	6H	18.4	19.0	18.7	19.3	19.6	18.4	19.0	18.7	19.3	19.
	8H	18.3	19.0	18.7	19.3	19.6	18.3	19.0	18.7	19.3	19.
	12H	18.4	18.9	18.7	19.3	19.6	18.4	18.9	18.7	19.3	19.
4H	2H	18.3	19.0	18.6	19.3	19.5	18.3	19.0	18.6	19.3	19.
	3H	18.3	18.9	18.6	19.2	19.5	18.3	18.9	18.6	19.2	19
	4H	18.2	18.8	18.6	19.1	19.4	18.2	18.8	18.6	19.1	19.
	6H	18.2	18.7	18.6	19.1	19.4	18.2	18.7	18.6	19.1	19.
	8H	18.2	18.7	18.6	19.0	19.4	18.2	18.7	18.6	19.0	19.
	12H	18.3	18.7	18.7	19.1	19.5	18.3	18.7	18.7	19.1	19.
8H	4H	18.1	18.6	18.6	19.0	19.4	18.1	18.6	18.6	19.0	19.
	6H	18.2	18.5	18.6	18.9	19.4	18.2	18.5	18.6	18.9	19.
	8H	18.2	18.5	18.7	18.9	19.4	18.2	18.5	18.7	18.9	19.
	12H	18.3	18.6	18.8	19.0	19.5	18.3	18.6	18.8	19.0	19.
12H	4H	18.1	18.5	18.5	18.9	19.3	18.1	18.5	18.5	18.9	19.
	6H	18.1	18.4	18.6	18.9	19.4	18.1	18.4	18.6	18.9	19.
	8H	18.2	18.4	18.7	18.9	19.4	18.2	18.4	18.7	18.9	19.
variation of	of observ	er post	ion								
s-	1.0H		+3.		-5.3		+3.		-5.3		
	1.5H		+6.		-6.5		+6.		-6.5		
	2.0H		+8.	0/	-6.6		+8.	0/	-6.6		
standard- table			BK00 BK00								
correction				0.2					0.2		

Metrology

Properties of UGR as it was defined in the CIE documents

- Purely numerical method characterizing the similarly as CRI.
- It is calculated from Luminous Intensity Distribution of curve of the luminaire
- Can be easily re-calculated for different parameters of the luminaire (flux, dimensions, installation height), e.g.:

$$UGR_1 = UGR_0 + 8\log\frac{\Phi_1}{\Phi_0}$$

Metrology

- UGR can get negative
- Estimation of L_b uses lumen method and transfer factor values.
- Does not take into account luminance non-uniformity of the luminous parts.
- Does not take into account spectral composition of the light.

Effect of CCT and Colour Rendering/Shift on the User's pleasantness (1): Experimental set-up

			7
T		•	
	1		È

					Observer s
	CCT [K]	∆CCT [%]	CIE Ra	CRICAM-UCS	Preference Score
FL	4745	-5.10	93.7	94.3	85.35
LED NUV	5024	0.48	98.1	98.51	86.74
LED CW	5481	9.62	70.68	71.02	64
LED RGB	5293	5.86	35.58	49.72	40.23
LED WR	2906	7.63	88.56	86.79	88.14
CFL	2708	0.30	82	75.97	90.93
LED RGBY	2781	3.00	76.2	80.27	88.14
HAL	2739	1.44	99.7	99.02	97.91
LED WW	2624	-2.81	82.78	78.82	77.91

FL – Fluorescent light

LED NUV – nUV peak LED with 3 Broadband phosphors

LED CW – Blue peak LED with yellow phosphor

LED RGB – RGB cluster

EURA

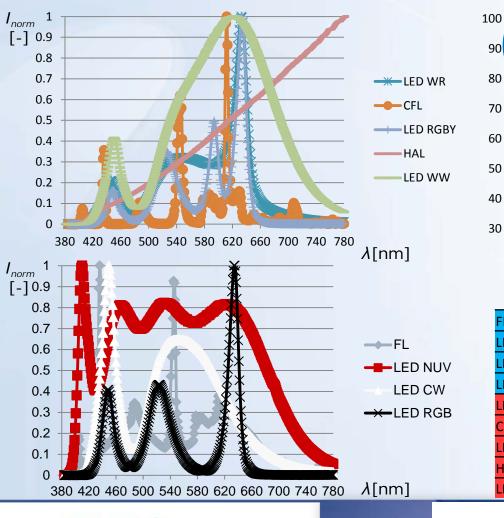
LED RGBY – RBGY cluster

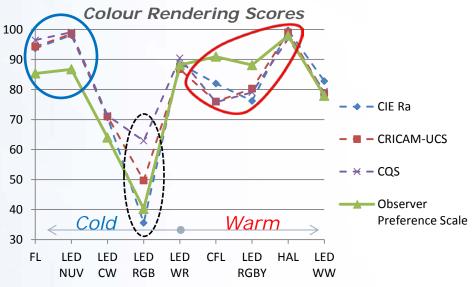
CFL – Compact FL

A80 – Blue & Red peak LED with yellow phosphor

HAL – Incandescent halogen

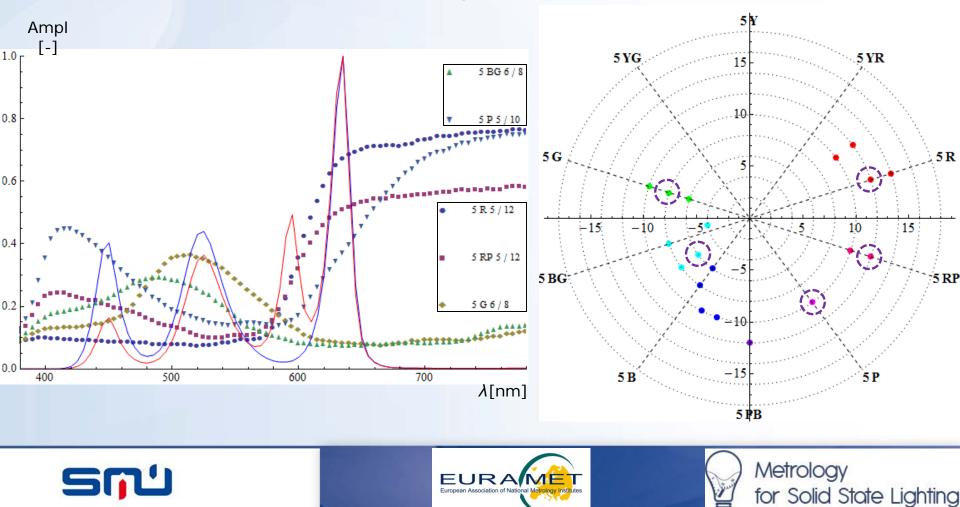
LED WW – Blue peak LED with yellow phosphor


Observer's

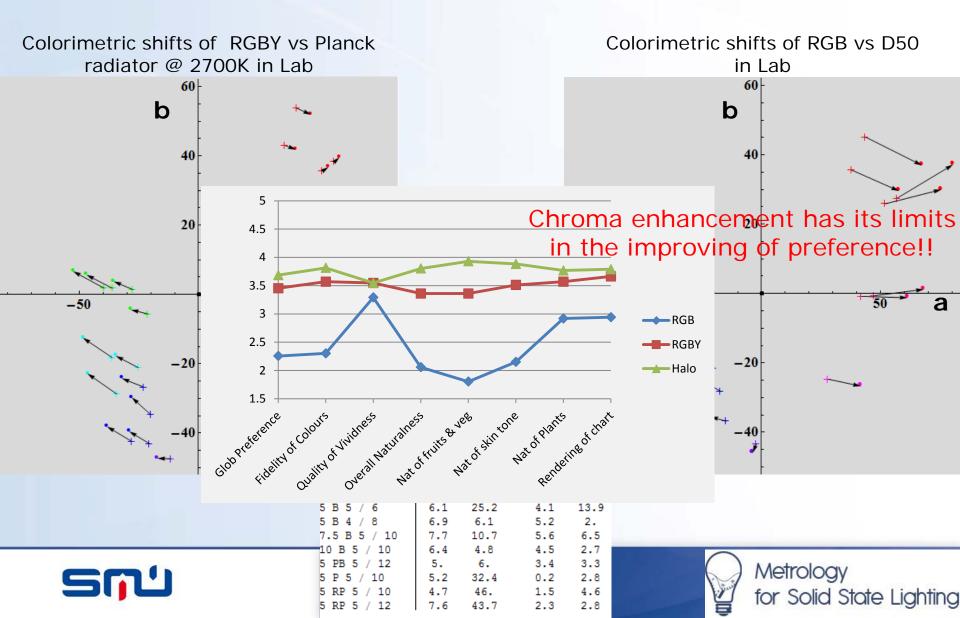


Effect of CCT and Colour Rendering/Shift on the User's pleasantness (2): Results

EURA



Observer's


	CCT [K]	CQS	CIE Ra	CRICAM-UCS	Preference Score
FL	4745	96.45	93.7	94.3	85.35
LED NUV	5024	99.1	98.1	98.51	86.74
LED CW	5481	71.33	70.68	71.02	64
LED RGB	5293	62.89	35.58	49.72	40.23
LED WR	2906	90.48	88.56	86.79	88.14
CFL	2708	75.78	82	75.97	90.93
LED RGBY	2781	79.06	76.2	80.27	88.14
HAL	2739	96.91	99.7	99.02	97.91
LED WW	2624	79.4	82.78	78.82	77.91

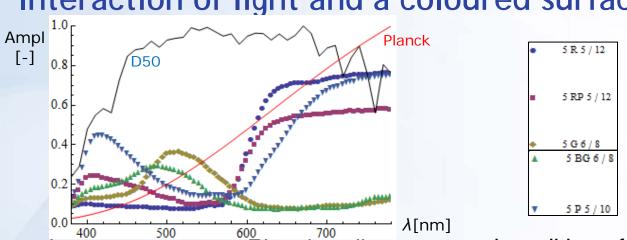
Metrology for Solid State Lighting Colour Rendering/Shift for RGB and RGBY Spectral Compositions - preword

Reflectance spectra of Matt Munsell TCSs and *spd* of the RGB and RGBY light Position of the TCSs in Munsell Uniform Colour Space

Colour Rendering/Shift for RGB and RGBY Spectral Compositions – Modelling & Appraisal

Effect of CCT and Colour Rendering/Shift on the User's pleasantness (3): Overall insight

- In the living room conditions observers did not feel comfortable in the environment illuminated by artificial cold CCT light – it has reminded hospital/dentist or workspace.
- Such response of the observers occurred even if the spectral composition of the light was very close to the daylight.
- Why is it so and what shall be investigated?


Due to light coming from the ceiling, not a window?? Due to broader surrounding, i.e. test room located in a huge laboratory hall, which the observer has memorised/related to??

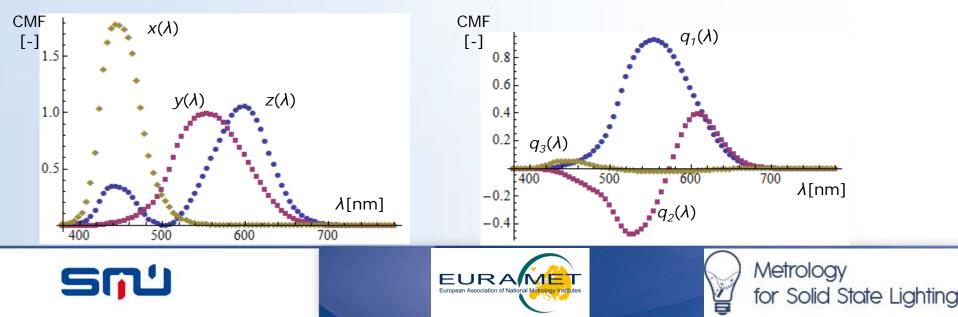
- High observers' preference of CFL indicates that a "widely exploited spectrum" may win over preference. Users get used to it and appreciate.
- Thus memory colours effect shall be included in the colour rendering quality metric.
- However, other tendencies observed in the preference results.

Metrology

Interaction of light and a coloured surface

- Low temperatures Planck radiators good rendition of red hues.
- Daylight spectra with CCT \geq 5000K good rendition of blue hues.
- Warm lighting may benefit by (chroma) enhancing of the blue hues.
- Cold lighting may benefit by (chroma) enhancing of the red hues.
- Otherwise chroma enhancements can have disturbing effects on the Colour Rendering.
- LED solutions can provide all possibilities of chroma enhanecement – spectral compositions leading to disharmonious Colour Rendering shall be avoided.

Metrology


Assessment of Colour Rendition

Traditional approach to the Colour Rendering

 Estimation of CR based on colour shifts of many (and preferably wisely selected) TCSs followed by applying a weighting procedure.

Alternative to the traditional approach

- Application of Opponent-Colour system Colour Matching Functions (CMFs): a(λ), t(λ), d(λ); derived from 1931 CIE CMFs x(λ), y(λ), z(λ) by a linear transformation.
- For more details about the method: J.A. Worthey, "Colour rendering: a calculation that estimates colorimetric shifts," Col. Res. Appl. (29), (2004).

Colour Rendering Metrics for the Tested spectral illumincances

- Two Reference/Pivot illuminance spectra used: Planck 2700K – good rendition of red hues,
 - Daylight with CCT = 5000K good rendition of blue hues.
- Colour rendering matrices are derived for the testing spectra used in the subjective experiment.
- Preference rating is provided too.

	Daylight 5000K	Preference Rating		Planck 2700K	Preference Rating
FL	$\begin{pmatrix} 1. & 0.03 & 0. \\ 0.03 & 1.06 & 0.02 \\ 0. & 0.02 & 1.03 \end{pmatrix}$	85.35	LED WR	$\left(\begin{array}{rrrr} 1. & -0.04 & -0.01 \\ -0.04 & 1.1 & 0.03 \\ -0.01 & 0.03 & 1.4 \end{array}\right)$	88.14
LED NUV	$\left(\begin{array}{rrrr} 1. & -0.03 & -0.01 \\ -0.03 & 1. & 0.01 \\ -0.01 & 0.01 & 0.88 \end{array}\right)$	86.74	CFL	$\left(\begin{array}{rrrr} 1. & -0.08 & -0.04 \\ -0.08 & 1.06 & 0.08 \\ -0.04 & 0.08 & 1. \end{array}\right)$	90.93
LED CW	$ \begin{pmatrix} 1. & -0.01 & -0.02 \\ -0.01 & 0.81 & 0. \\ -0.02 & 0. & 1.17 \end{pmatrix} $	64	LED RGBY	$\left(\begin{array}{rrrr} 1. & -0.06 & 0. \\ -0.06 & 1.31 & 0.04 \\ 0. & 0.04 & 1.27 \end{array}\right)$	88.14
LED RGB	$\left(\begin{array}{rrrr} 1. & -0.31 & -0.04 \\ -0.31 & 1.45 & 0.08 \\ -0.04 & 0.08 & 1.46 \end{array}\right)$	40.23	HAL	$\left(\begin{array}{rrrr} 1. & -0.01 & 0.\\ -0.01 & 0.99 & 0.\\ 0. & 0. & 0.98 \end{array}\right)$	97.91
			LED WW	$\left(\begin{array}{cccc} 1. & 0.03 & -0.02 \\ 0.03 & 0.93 & 0.03 \\ -0.02 & 0.03 & 1.17 \end{array}\right)$	77.91

Metrology

Acknowledgement

- Acknowledgement to the collaborators, especially: LNE OMS
- The research leading to these results has received funding from the European Union on the basis of Decision No 912/2009/EC.

Thank you for your attention

Metrology